A Data-based Method for Choosing the Number of Pilot Stages for Plug-in Bandwidth Selection
نویسنده
چکیده
The choice of the bandwidth is a crucial issue for kernel density estimation. Among all the data-dependent methods for choosing the bandwidth, the plug-in method has shown a particularly good performance in practice. This procedure is based on estimating an asymptotic approximation of the optimal bandwidth, using two ‘pilot’ kernel estimation stages. Although two pilot stages seem to be enough for most densities, for a long time the problem of how to choose an appropriate number of stages has remained open. Here we propose an automatic (i.e., data-based) method for choosing the number of stages to be employed in the plug-in bandwidth selector. Asymptotic properties of the method are presented and an extensive simulation study is carried out to compare its small-sample performance with that of the most recommended bandwidth selectors in the literature.
منابع مشابه
Determination of optimal bandwidth in upscaling process of reservoir data using kernel function bandwidth
Upscaling based on the bandwidth of the kernel function is a flexible approach to upscale the data because the cells will be coarse-based on variability. The intensity of the coarsening of cells in this method can be controlled with bandwidth. In a smooth variability region, a large number of cells will be merged, and vice versa, they will remain fine with severe variability. Bandwidth variatio...
متن کاملNeural networks for bandwidth selection in local linear regression of time series
The problem of automatic bandwidth selection in nonparametric regression is considered when a local linear estimator is used to derive nonparametrically the unknown regression function. A plug-in method for choosing the smoothing parameter based on the use of the neural networks is presented. The method applies to dependent data generating processes with nonlinear autoregressive time series rep...
متن کاملA New Framework for Distributed Multivariate Feature Selection
Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...
متن کاملAn Application of Fuzzy TOPSIS Method for Plant Selection in Rangeland Improvement (Case Study: Boroujerd Rangeland, Lorestan Province, Iran)
Species selection based on a new method such as a fuzzy method is one of the most important stages in the successful plantation management planning as choosing a suitable species for the site can be the key to success. This paper is based on a fuzzy extension of the Technique or Order Preference which is similar to Ideal Solution (TOPSIS) method. The purpose of this paper is to develop fuzzy TO...
متن کاملChoosing the Best Hierarchical Clustering Technique Based on Principal Components Analysis for Suspended Sediment Load Estimation
1- INTRODUCTION The assessment of watershed sediment load is necessary for controling soil erosion and reducing the potential of sediment production. Different estimates of sediment amounts along with the lack of long-term measurements limits the accessibility to reliable data series of erosion rate and sediment yield. Therefore, the observed data of suspended sediment load could be used to ...
متن کامل